


SIG N IFICANCE AND EXPLANATI ON

Consider the Hamiltonian system of ordinary differential equations :

d~ - 
~~

— (t,p,q) , 
dt 

= ~~ (t,p,q) where p = (p
1
,...,p ) and

Such equations model conservative forced mechanical systems.

• Suppose H is T periodic in t. Then one might hope for a T periodic

respon se. Under appropria te condi tions on H , it is shown that this is the

case . Noreover (*) possesses a family of inf in itely many distinc t subharmonic

solutions, i.e. solutions having period kT where k is an integer .
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ON SUBHARMONIC SOLUTI ONS OF HAMILTONIAN SYSTEMS

*
• Paul H. Rabinowitz

INTRODUCTION

Consider the Hainiltonian system of ordinary differential equations

(0.1) = ~~H(t , z ) ,  ~ = {
~ 

-
~

]
where z e 

2n 
and H is T periodic in T. It is then natural to seek T

periodic solutions of (0.1). Since H is kT periodic for all ke~~~, one

can also search for kT periodic solutions (called subharmonics) . This latter

quest is complicated by the fact that any T periodic solution is a fortiori

kT periodic. Thus an additional argument is required to show that any sub-

harmonics are indeed distinct. Our main goal in this paper is to obtain the

existence of subharnioriic solutions for certain Hamiltonian systems which are

either sub— or superquadratic , i.e. which grow either less or more rapidly

than quadratically at in an appropriate sense.

existence results for T periodic solutions of (0.1) were presented

in (1) for superquadratic Haxniltonian systems using finite dimensional mini—

max arguments together with estimates suitable to pass to a limit. An improved

existence mechanism was introduced in (2) and applied to some of the super—
• .

quadratic problems of (1) as well as to several subquadratic cases. .W~ will

show~here that these problems possess not only one T periodic solutions - ‘

but infinitely many distinct subharmonic solutions Z
k~ 

A word of caution

must be entered at this point. Although zk
Thas period kT, it may not be

the case that has minimal (i.e. primitive) period kT. Indeed sim-

ple examples show that there may be an upper bound on the minimal period of 
(~k
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Sections 1 and 2 are concerned with superquadratic Hainiltonian systems. In

§1 , us ing the variationa l framework of [2] , we first establish the existence of

a T periodic solution of (0.1) in a somewhat more general context than was treated

in [1]. A comparison argument and some simple estimates then yield a family of

distinct subharmonics. In §2 we study the behavior of Z
k 

as k -
~ ~~ . In partic-

ular under further hypotheses on H we show Z
k 

-
~ 0 and has a minimal period

wh ich tends to as k -
~ . Lastly similar results are obtained for a family

of subquadratic Hatniltonian systems in §3.

We do not know of many works on subharmonic solutions of Hamiltonian systems.

in the global setting treated here. For a single second order equation , super-

quadratic results related to ours, but containing much more information , have

been obtained by Jacobowitz [3] and by Hartinan [4) using the Poincaro—Birkhoff

fixed point theorem. See also Nehari [18] and Wolkowisky 119]. In work in 
*

progress, Clarke and Ekeland have shown there are a family of distinct subhar-

monics for a second order convex subquadratic Harniltonian system [5].

Local results centered about the Birkhoff fixed point theorem and Birkhoff-

Lewis Theorem have been the object of a considerable amount of study and

establish the existence of long periodic solutions of (0.1) near an equilibrium

or periodic solution. See e.g. Birkhoff [6] or Siegel—Moser [7, §24] for the

Birkhoff fixed point theorem and applications to the restricted three body prob-

lem. More on such applications can be found in Moser [8] and Conley [91 . For

the Birkhof f—Lewis Theorem, see e.g. Birkhoff [101 , Birkhof f—Lewis [11] , Lewis

[12] , Arnold [131 , Harris [141, or Moser [15].

We thank Charles Conley and J~i
’rgen Moser for several helpful conversations.
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§1 THE SUPERQUADRATIC CASE

We begin this section by proving the existence of one nontrivial solution to

(1.1) = /H ( t , z ) .
z

Suppose H(t,z) = ,?~(z) + H ( t , z) with ,t(z) a quadratic form and H satisfies

(H
1
) ul ( t , z) > ~~, ~~ , ~~2n

• (H2) H(t,z) = o(Izj 2) at z = 0

(H
3
) There is a 

~ 
E (2 ,n) and R >O  such that O <PH (t,z) < (z,H(t ,z))

2

for all te]R , Iz i > R

(H
4
) There is a T> 0 such that H(t + T,z) H(t,z) for all t€ IR, ze ~ 2n

(H
5) There are constants c~,R

1 
> 0 such that IH~

( t ,z) I <

for all t d R  , zj > R
1
.

In (H ) ,  (H ) ,  and the sequel , ~~~~~~~~ denotes the usual Euclidean inner3 5

product in 1R ’~. Since ~ is quadratic , there is a symmetric 2n x 2n matrix

0 such that L(z) = FQ z, z)
~~ 

. Consider the eigenvalue problem

(1.2) =

Since 1 is real , whenever (A,~
) is an eigenpair for (1.2), so is (A ,~~). Sup-

pose

( a.) (1.2) has 2n purely imaginary eigenvalues = iji . where p . > 0 ,

1 
~ 

n and A .~ A~~, 1 < j < n wi th  corresp onding eigenv~ ctors

1 
~ 

n and j -f ri i ~~ n.

—3—



Note that L need not be definite. We can normalize the 
~~

. so that

(1.3) 
~~~j

’
~h~~~2n ’ 

= 
,~ 

6jk

and is the usual Kronecker 5.

Theorem 1.4: Suppose H eC
1
(R x ]R2~~,R) and satisfies (H

1
) — (H

5
) and (i).

Then (1.1) possesses a nonzero T periodic solution.

• Corollary 1.5: Suppose H e  C1 (R x ~~2n P) and satisfies (H
1
) - (H

5
) and

0 = 0. Then (1.1) possesses a nonconstant solution.

Remark 1.6: If H is independent of t, these results reduce to Theorem 3.3

and Corollary 3.54 of [2] and are true for all T>.O without assuming (H
5
).

Indeed still stronger statements are valid for the autonomous case [16). The

proofs of Theorem 1.4 and Corollary 1.5 are similar to the proofs given in

[2]. Since the dependence of certain sets on parameters is essential in getting

the subharmonic solutions of (1.1) later, we will sketch the proof of Theorem

1.4 carrying out in detail those parts of the argument which differ from [2] and

where precise estimates are necessary in the sequel. We will not prove Corollary

1.5. Its proof is similar to but simpler than that of Theorem 1.4.

The existence lemma which Theorem 1.4 requires was proved in (1]:

Lemma 1.7: Suppose E is a real Hu bert space, E = E
1 °E2 

where E
2 

E~

and fEC 1(E,iR) satisfies:

(f
1

) f ( u )  = (Lu ,u) ÷ b(u) where u = U
1 

+ u
2
e E

1~ 
E
2
, Lu = L

1u
1 

+ L
2
u
2
,

and L. :E.-~ E. is bounded linear and self adjoint , i 1,2.
1 1 1

—4— 
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Choose r
1 

so that

2 p( 1.29) ~(s) s — a
3 

S 4- a
4 

< 0

for all s > r 1. Set M max ~ (s) and observe that ~ 
z~ + a3 II z° 11~

— 
s [0 ,r11

as . Hence for ze ~B n E and r sufficiently large , we have
— 

r2 2 2

M < l i z  ~~ + a
3 ii z ° i1 ~ and .f < 0  E u on ~Q with Q {seIO < s < r1

} e ( t  ~~

Since f satisfies the hypotheses of Lemma 1.7 , it possesses a positive

critical value c and corresponding critical point ZK• It follows from [2]

that Z
K 

is a classical solution of (1.12) and Z
K 
is nonzero since f(z

K
)> 0.

It remains only to prove that satisfies (1.1) for appropriately chosen

K. By Remark 1.9 ,

2 2 I T

( 1.30) c < su~ f (z )  = sup ~2 
— iZ~ 

— J H
K

(t
~
z)dt

zeQ 0 -  0
< r~~, r€ [ 0 ,r

11

2
— 1

Now as in (1 .17) ,  ( 1.19),

( 1.13) M
1 ÷ r~ > - 

~
j 
~~~~ 

z
K
;
~~Xz fl

P.
2n dt > a5 Ii ZKW - a6

Hence

(1.32) I I Z K II < M
2 

(independently of K)
L1
~

By (H
5
) for H

K 
and (1.30) — (1.32),

(1.33) 
K

L 
l ii! HK (t ,zK) 

L1 -~~~ ll~ 
ZK II 1 + lI~Kz (t ,zK)Il 

L
1 < M 3 

.

-10- 
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Fi :~.~l 1v by (1.33) and (1.32),

( 1 .34 )  I Z K 
L 

IIZ K t1
Ll 

+ a7 l ) Z K Ii~ 
< M

4
.

Thus for K > M we have H (t ,z ) H (t ,z ) ,  (1.1) is satisfied, and the
• — 4  Kz K z K

proof is complete.

Remark 1.35: If H is independent of t and 0 is not positive definite , (1.1)

possesses at least one nonzero equilibrium solution. This may be the solution

obtained in Theorem 1.4. A deeper result in [16] gives noncoristant solutions

for this case assuming only (H 3) .  However if 0 is pc6itive definite or

0= 0 , f ( z K) 
>0 and 1-1(z) > 0 imply Z

K 
is nonconstant.

Having established the existence of one nonzero solution of (1.1), we will

show that in fact there are infinitely many.

Theorem 1.36: Under the hypotheses of Theorem 1.4, there exists a sequence

(k .) C } , k . -
~ , and corresponding distinct k . T periodic solutions of ( 1.1) .

Proof : We can tak e T = 21T. Choose k C ]N. It is convenient to make the

change of variables i = k 1t. Thus if z ( t )  is a 2 ~t k  periodic solution of

( 1 1) ~ ( T )  = z(kT) satisfies

( 1.37) = k 211 (ki , ~

• and we seek a 2 I r  periodic solution of ( 1.37) .  Since k H ( k T ,z) satisfies

(H
1

) - H~ ) and ( 2 ) ,  Theorem 1.4 provides a critical point ck (t )  E of

• I 2ir
(1.38) 

~~~~~ 
= A (~~) 

— k f H (k-r ,C) dr
0

K

-11-
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where K depends on k, which for appropriately large K is a classical

solution of (1.37). Note that C1
(kT) also satisfies (1.37). If ~1

(kT ) =

it is easy to check that

( 1-39) Ck ~~~~~ 
= k f

1
(~ 1

) kc1

Since c1 >0 by Lemma 1.7 , it fol lows that °k
9 as k~~ - We will show

next that this is impossible since C
k 

is bounded from above independently

of k .

• Recall from (1.30) that

2(1.40) ck 
< r

1
(k)

where we have written r
1
(k) to emphasize its dependence on k. The parameter

r
1 

was determined in (1.29) which in turn was derived from (1.26) - (1.28) .

The corresponding equation satisfied by r1
(k) is

• (1.41) iU~ (s) = S
2 

— ka 3s
M + ka4 < 0

for all s > r1
(k) . It fol lows that

1 1
2a =

(1.42) r (k) < max 
__~_ i 2  4 p

1 — ka 3 a3

Thus the critical values are uniformly bounded and therefore there is a k
1 ~‘ i~

such that 
~k

( r )  
~ ~1

(kr) for all k >k
1
. Reapplying what we have just shown

to the 2TT periodic function k
1
11(k

1
-r,z), it follows that there is a sequence

of nonzero 2-r~ periodic solutions Z~~(r) to

( 1.43) jk 19H (j k
1T, Z)

• with Z. (-r ) ~ Z
1

(j T )  for all j > k 2 . Moreover from the form of (1.43) and

=12-
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the corresponding variational problem , z,(T) = 
~~~

. ( T )  and z . ( T )  ~ ‘ (jk, ) f~ r
3 jk

1 
1

all j > k 1. It follows that we have a sequence 
~l 

(t), r
~k 

( t/k1
), 

~k k 
( t/k

1
k. )

1 1 2
of distinct nonzero solutions of (1.1) and the proof is complete.

Remark 1.44: The argument of the last paragraph can be replaced by the following

one which gives a wider range of periods for the solutions so obtained . If for

some k > m , 
~k ( T )  = 

~k
( t/k ) ~ (t) = ~~ (t/m) , then ~ (kt )

and C ( m T )  Ca~~
t
~~ Moreover as in (1.39) ,

(1.45) C
k 

= 

~~~~~~ 
= kf 1

(~~) ;  C
m 

= mf
1

(~~ )

Since f (~~) 
>0 and {cJ is bounded, it follows that there can be at most

1 3

finitely many k > m  such that t
~k 

= C
1n

Remark 1.46: If H is independent of t and z(t) is a solution of (1.1)

so is z9 ( t )  = z (t  + 8) for all 6 €  [0 , 2 i t ) .  Since f k (Z e
) = f

k
(z)

~ 
the solu-

tions obtained above must differ by more than a simple translation for the case.

Remark 1.47: If U(t,z) splits into the sum of kinetic and potential energy

terms , e.g. H(t,z) = 4 p 1 2 + V ( t ,o ) ,  simpler arguments without requiring (H5)

can be used to establish analogues of results of this and the following section.

(See also El))

I .
_ _ _ _ _ _ _ _ _ _ _ _ _  
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§2 ASYMPTOTICS

In this section we will study when the functions obtained in Theorem

1.36 are uniformly bounded in HI 1 
and therefore possess a limit, when this

limi t is zero , and when the minimal period of tends to inf in i ty  as k~~

For convenience we always assume T = 2 ii. Let 27r2
~k
1 

denote the minimal period

of 
~k

( T ) . Then C~~(t/k) has minimal period 2iik9.
1
.

Proposition 2.1: tinder the hypotheses of Theorem 1.4 , if ki ,~
14 along some

subsequence , then the functions C
k
(t/k ) are uniformly bounded in I~

Proof : Since

(2.2) C
k 

= 

~~ 
— k f

~

k I 
[4k

(T)
~~~Z

(kT
~~k

)
2fl

_ ñ (kT ,
~~~)1

d1

2iik

~k 
1
~ 

k [4 k ,H(t ,S~
fl 2

by (H
3
),

2 irk

(2.3) ~~~~~ > a
1 

f 
~~ ~~~~~~~~~~ ]R

2
~ 

dt — a
2 
2-uk

Therefore

2i~k 2iik

(2.4) -
~~~~ + a 3 

> a
1 I Z~ kl Hz

(t
~~k~~P.

2n dt > a
4 f~~~k 

k .

via ( 1 . 1 4) .  The H t ~31der inequali ty then gives a bound on IIC k~ ~ 
If

~k 
> R

1 
in the interval (s,ci), then for t € (s,a ) ,

—14— 
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(2.5) kk (k) ~~ ~kY1 
+ H

z
x t~ k~ 

tdx

2irk/9
• 

~ ~ ic~~j~~ 
+ J

. k~~1 °
~~k

1 + i~ (x?
~~k~ 

i ) d x

~ 
1
~~J~~ }r~ 

+ M

by (2.3) and (H
5
) and the L

1 
bound . Integrating (2.5) over [0,2 k ~~

1] with

respect to s , our L1 bound implies tha t the func tions are uniformly bounded

in L and by (1.1) in C
1
.

Remark 2.6: It follows immediately from Proposition 2.1 that a subsequence

of the functions Ck
(
~~
) converge in C

1 
to a periodic solution of (1.1)

If H is independent of t, we can improve on Proposition 2.1

Proposition 2.7: If H = 11(z) satisfies (H
l
)_ (H

3
)~ the functions ~ are

un i fo rmly  bounded in C
1
.

Proof : As in (2.2),

(2.8) C
k 

= f
~ ~4 k l Hz k

)
~~~2n 

- Ck~~
dt

2-irk
> a

5 
f 

k’ ’ z~~ k~~P.2n dt — ka6

Since H (~~~) constant,

(2.9) 2 k  H(~~~) = H (~~~)d t  
-1 

2irk 

~ k~
Hz~~ k~~~ 2n h dt

+ a
7
k Ik Il

-15-
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• Now (1.16) and (2.8) yield an L bound for and (1.1) provides the C1

bound .

Next we study a situation in which ~ 0 as k-+ . For this we requir e

a global version of (H
3
):

(H ): There is a u€(2,~ ) such that 0<PH (t ,z) < (~ ,H (t,z)) 2n3 z P.
for all z € \{o } and t € P.

Obviously (H
3) implies (11

3
) and in addition for the corresonding 11

K’ 
for

all r > p >0 and ~ ~ 5
2n—1

(2.10) H
K
(t,r

~
) > )

Choosing in particular r = 1, we see (H
3
) also implies (1-12

).

Theorem 2.11: Suppose 11€ C1 (P. x ]R2’~, P.) and satisfies (H
1
), (H

3
), (H

4
) —

(11
5
) and (~ . ) .  Then (0.1) possesses a family of kT periodic solutions which

converge to 0 as k-* ~ uniformly in C1(]R ,]R2’~).

Proof: By our preliminary remarks, Theorem 1.36 is applicable here and we have

a family of solutions 
~ k
(t/k) as in that result. We will obtain uniform L~

and C1 bounds for these functions. By (2.2) and (1~3
)~

(2.12) C
k ~~~ (4 - 

~~ f
~~

k
(~~~~~ (t~~~)) dt

2-uk(4 - !. )p f 1I(t
~
Ck ) dt

Let IC[0 ,2lTk J be an interval in which kk~
- I
~

> R
1
. We can assume R

1~ 
1 .

If I = [0,2iikl, then by (2.10)

2sk 2-uk
(2.13) f H(t,ç)dt >-

~ f kk i d t  > 2-uk y R~ 
-

~

0 0

—16—
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as k ~ ~ where ‘y = mm H (t ,C ). But since C
k 

is uniformly bounci€~J
t€ ]R , I C I i

in k , (2.13) is contrary to (2.12). Hence for all large k, by lengtheniry~

I if necessary we can assume there is an 5€  ~I such that kk (k R
)
.

Now for any t€ I
k~ 

as in (2.5),

(2.14) - 
lC k (

~
) I 

~ ~k~k~ ’ 
+ f O

~~1 +

< R~ + a
1 f kk iax + 

~~~s k
t H

z
i )

P.
2n dx

Since on I ,

(2.15) 
k~~

1
z

(t
~~k~~ P.

2n > p H ( t ,~~~) ~~- ~‘r k~ I ~~~ ~~~~

we can estimate the second term on the right in (2.14) in terms of the third

term. Then (2.14) and (2.12) give an L bound and (1.1) a C
1 bound for

By these bounds , 
~k 

converge along some subsequence uniformly on compact

subsets of P. to Z. For m > k by (2.12) and (B
3
),

2-uk
c > (i_ i) f (~ ,H (t ,~ ) )  dt.• n1 2 p m z in

Letting m -
~ gives

2iik
h u t  c > ci - 1) f (z,H (t ,z)) at

m — 2  
~ 

z

for all k € f~ . Hence

• 1 1
-
• 

(2.16) lirn c > (— — —) f (Z , H ( t , Z ) )  dt > 0
m — 2  P 

0 
z 

P.
2
~

unless Z E O .

—17—
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We will use a comparison argreement to show that C 4  0 and therefore

Z 0. For any C) > 0, by (2.10),

( p
i z i

(2.17) H
K
(t
~
z) > b(c~)~~

for C where b (a) = ruin H~~(t,~~). Let C (]R , I R )  sati s fy  X
~~
(s) = I

t

for s < (~~~; = 0 for s > 2w; and x ’ (s) < 0 for s € (w, 2w). Choosing

0 €  (0,4), define

(2.18) G(s) = 8[(l - X0(s))b(a) (!) P J X 1
(s) + (1 - X

1
( s ) ) y  ~ U

Then for 8 sufficiently small ,

(2.19) G( l zl ) Fi
~~
(t
~
z)

for all t C P. , z C IR
2

~ . Moreover it is easy to verify that for 8 possibly

still smaller ,

• (2.20) 0 < p G  < (z ,G
— z

P.
2n

for J z  I > 2a and 8 is independent of a € (O~4). Since G 0 for I z l < a,

it follows that G satisfies 
~
M
~~ 

— (11
3

) and is independent of t. Set 
=

2 n
(2.21) g~~(z) = A ( z )  — k I (L(z) + G ( i z i ) )  dT

0

It then follows from Remark 1.6 that for each ke ~ , g~ has a c~ itical

value d
k 

and corresponding critical point By (2.19),

(2.22) 
~~~~~ 

<~~~ (z)

for all z E E. The construction of S and Q (which depend on Ic) given

in Theorem 1.4 and [2] shows the same S and ç can be used in the

-18-
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varia tional prob l em which determines 
~k 

and d
Ic
. Moreover by (2.22) any

set which is admissible for the Ininirnax characterization of d
k 

is also

admissible for (See p. 247—248 in [21). Therefore by (2.22),

(2.23) O c
k ~~~ 

d
k
.

t~e will  show d
k 

0 as Ic

The proof of Theorem 1.4 with H replaced by kH shows that

~ C span {ek
}e

~~~ 
F
k 

where now e
k
e ~

= span { 
~ jm N~~~ 

- k) sgn (O~~j ,~~j
)~~2n 0 }

~

etc. Hence by Remark 1.9,

(2.24) 0 <d
Ic -~~ sup

For w e F  , we have w = li w l i 2~ 
where ~ = 8e~ + ~v with v C E~

(
~~ B1k 

L
and

(2.25) 
L
2 

= 1 > a2{J
2

I~ 1 (cdT
J 

= a
2 {f ~~~(8 2

l~~t ( e k
) + ~

2
)~~ l (v))dT) >

with a
3 

independent of Ic. Choose any we F
k 

such that ~~ (w) 
> 0. Then

by (2.25),

2- i 2i1
(2.26) Ic f G ()wI)dt < A (w) — k I ~Z(w)dt

0 0

= 1I w i1 22 (A(~~) - k

8
2 

11w 11 22 ( A ( e
k

) - k 

~: 
e
k
)dt) < 

~ JIw~ 
L
2 mm P~

-19-
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By ( 2 . 2 0 ) ,  lett ing A = {T C [0,2ir ] W (T) I > 2 c r } ,  we have

(2 . 2 7 )  f G(~w~)di > f G (IwI)dT > 
G ( 2 a )  j !wl~dT

0 (2a)~
’ A• a a

> 
G(2a) IIw II~’

_ — 2irG ( 2a) 
~~(2o)~ L~

> a~ 
G(2a) lI w II~2 - 2 G(2a)
( 2 a)  L

Combining (2.26) and (2.27) leads to

(2.28) a~ !1WI1
2
2 -

> Ic [a4 ~~
- llw !l’~ 

- 27rG(2a)]

which implies 
1 L.

- 

(2.29) II WI! 2 ~~max [14 
(2a)~1 J P {2a5

(2
~~
’ } }

max (a
6
a,a

7
(a)k

Therefore by (2.21), (2.24), and (2.29), 
2

2 2  2(2.30) d
k 

< a
8 
max (a

6o , a
7
(o) k

so

(2.31) lim d
k 

< a
8
a~c-i2

Since ac (0,4) is arbitrary , it follows that him d
k 

= 0 and Z 0.

• —20—
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It remains to show that C
k
#O uniformly in C 1

(P.,P.2°). By (2.12) for

all s > O ,

2,rk~
(2.32) C

k 
> a~ f H(t

~~k
)dt > mm I~(t,~~) Ink

(s)
0 t€ IR,IcI=s

where in
k
(s) denotes the measure of {te [0,2-uk] kk~~ 

I > si). Since C
Ic 

-
~ 0,

(s) ~ 0 as k -~- c ~ Choose any c -
~~ 0. Then for any large k and any t€ P.

there is a o€P such that It — a~ < m.x
(e) and kk~~ I 

> c. Therefore

(2.33) kk~
- I ~.kk

(
~

) I + f dx < c +

~ 
C 1)I~~(l)M

where M is an upper bound for lIC k 1 1 .  Therefore IIC.~II 
L 

0 as k ~

and (1.1) implies the same for Ck~ 
The proof is complete.

Next we study the behavior of the minimal period of C.
1~ 

as Ic -
~ ~~~. As

was mentioned in the introduction, the minimal period need not tend to infinity .

Indeed if 11(z) = g(lz~
2) with z € P.

2 
and g ’(s) > 1, the minimal period

of any solution of (1.1) cannot exceed it. (See Remark 2.56 of [11). Tue

next result however gives a criterion for periodic solutions of (1.1) which

converge to 0 to have a long minimal period.

1 2nTheorem 2.34: Suppose 11C C (P. x P. , P.) and satisfies

• (H
6
) H(t,z) = H(t,z) + R(t,z) where H is positive for z ~ 0, homogeneous

of degree 8 > 2 in z, and R(t,z) = o (Iz(6), R (t,z) = o(1z1
81 ) at z = 0.

• If are a f~~ily of periodic solutions of (1.1) and 0 uniformly

as k -
~ ~~~~, then the minimal period of Z

k
4 as Ic -

~~

—21—
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Proof : Let T
k 

be the minimal period of z
k 

and set T = 2iTtT
k
1
. Then

w
k

( T )  z
k

(t )  is 21T periodic and satisfies

(2.35) ~~k = 

T
k 

gH (_.!~~_ w
k
). 

. 

==

Let [z] denote the mean value of a 2 periodic function z(t), i.e.

1 
2-u

[zi = 
~~

— f z ( t )  dt

If W
Ic 

= (u ,v), then (2.35) implies

2ir T 2i~ T i
(2.36) 2 f (v,ü) di = —

~~~ f (w ,H (—
~~

—, w )) di =
0 2ir 

0 
k z  2-u k~~~2n

2

< 2  JJ v - [v] 11 2 !kI1 2 < 2 11 wk hI = 2( ~J JIH Z
(.,w

k
) 11 2

Consequently since Wk - *0  as k ÷=- , by (H6
) and (2.36),

(2 .37) M
1 
~: 

I W k i
8dT _< 

~~~~~ 
(-

~~~~~
_ 

, wkfl 2 di 
~ ~~~~~~~~ L2

< M
2
T~ 1~ 

2 ( 8 l)~~ M
2
T
k II W I !i 2 u i W k i8 th

• which implies

(2.38) T >Ic — 

I1 W III

as k - ~~a~.

Note that the quadratic part ~~. of I-I vanishes identically in the above

theorem . When this is not the case, there is a classical result of Birkhoff

and Lewis [14 ,15] which under appropriate conditions on .L and the quartic

-22- 
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part of H at 0 guarantees the existence of a family of subharmonic solutions

of (1.1) which converge to 0 and have minima l periods tending to

as k -
~ 

=. We wi l l  next show how a part ial  version of this local result fol-

lows from our global framework .

Theorem 2.39: Suppose H eC
1
(P. x ]R

2
~~,]R) and satisfies ~~~) ,  (H

2
) ,(H~ ), and

(H~ ) There is a p E  (2,~~
) and r > 0 such that O<pH(t ,z) < (z,H (t,z))

2

for 0< I z l < 2 r

Then (1.1) possesses a sequence of kT periodic solutions zIc which converge

to 0 as k - ~ °°.

Proof : Let X (s) be as in Theorem 2.11. Set

H(t,z) = ,~(z) + x (i z l ) H(t ,z )  + (1 - Xr d zl )Pi z I 4

Then for p sufficiently large 1~ satisfies (p
3
) with p replaced by

p =  tnin (u,4). Consider

( 2 . 4 0 )  ~ =~ l H  ( t , z ) .
~1 Z

By Theorem 1.36, (2.40) possesses a sequence Z
k 

of kT periodic solutions

and by Theorem 2.11 , Zk ~ 0 as k -
~ uniformly in C u(P.,P.

2
~~). Hence for

large k , I I Z k II <r and z satisfies (1.1)
k

Remark 2.37: A similar result obtains if .%~. 0 and then if H satisfies

the minimal  period of Zk 
-
~ ~ as k -

~ ~~~.

— —23—
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§3 THE SUBQUADRATIC CASE

In this final section analogues of the results of §1-2 will  be obtained

- • for subquadratic Haxniltonian systems. Suppose H satisfies (H
4
) and

(11
7

) There is a €(l ,2) and R>0 such that

0 < ( z ,H (t ,z) ) 
2n 

< VH (t,z) for I z i  > R,
P.

— 
IH~ t1z I  =( H )  Urn8 5) — 2

(11
9
) There are constants a

1
,a
2 

> 0 and s C ( l , \ ]  such that H ( t ,z)>a 1 1z1
5 

-

for t CIR , z

It was shown in [2, Theorem 4.11] that if H eC
1
(R x P.

2
~~,I R )  and sat isf ies

the above conditions and E is as in §1, then

T
g ( z )  = I [H(t,z) — (p,4) 2n 1 dt

0 P.

satisfies (f
1
) — (f

4
) of Lemma 1.7. Thus g has a critical point and (1.1)

a corresponding T periodic solution. For the verification of (f
1
) — (f

4
)

oen now takes E
1 

= E S E and E
2 

= E+ where E js the null space of

A in E , and E~~, E are subspaces of E on which A is respectively

• positive and negative definite. These three subspaces are orthogonal both in

E and in (L2(Sl))2mn . Indeed E = E
0
~~E~~~E and we have

II z~~
2 

= A(z~) - A(s ) + 15
0

1
2

where z ~0 + ~~
+ 

+ z cE. (See [2]) Lastly the appropriate sort of linkinq

here is provided by choosing S = {v} + E
1 and Q = B

R
r
~
E
2 where R is suf—

• ficiently larger than I lvI l  . Actually in [2) the choice of v = 0 was made .

However the proof is unaffected if any v € E
2 

is chosen provided that

R = R( tIv Il ) is suutably large. This freedom will be crucial for our next

~~~~~~~ •- 
_ _ _ _ _ _  
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result which establishes the existence of subharmonic- s for the present s i t uat io n .

Theorem 3.2: Suppose H~~C
1(P. x ~~2n 

, P . )  and sat isf ies  (H
4

) , ( H 7
) - ( H

9
) .

Then for all k € ]N , (1.1) possesses a kT periodic solution and

• II z II -* = as k -‘ ~~~.k L=

Proof: As usual we set T = 2-u. Consider

27T
(3.3) ~~(z) = k f H ( k i , z) d i  — A(z) .

By Theorem 4.11 of [2] cited above , possesses a critical value C
k 

for all

k e 1’~ and a corresponding critical point satisfying (1.37). As in §1 , if

the functions 5
k 

were all the same, we would have c
k 

= ~~(z~) = k c
1
. We

will show in fact that for large Ic,

(3.4) c
k 

> a
3
k8

for some a
3 
>0 and 8>1. Moreover since

C
k 

= 
~~(z~) = k 1: 

[
~~
(ki ,z

k
) 

~4 k~
H
z~~

u l 2kflR2n
h di ,

if { z II } were bounded, we would havek L

C
Ic 

< kM
1 IIZIII < M

2 
k

contrary to (3.4). Thus (3.4) implies 
‘~ k

11 -
~ as k -*

L
It remains to verif y ( 3 . 4 ) .  This estimate hinges on making a suitable

choice of v
k eE 2

. By Remark 1.9,

(3.5) C
k 

> inf
S

• For z € S we have z = z
0 
+ z + 6u E°e E S span {~~~l where ue ~~~~ E2

, - •

—25—

________________________________________ 
______________________________ •

— — 
~~~~ 1~~— ——____

IlL ~~~~~~~~~~~~~ ____________________________________I ~
- --

~
-—----• — —•- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~
•• - - . • • - • . • • . • • . • . • . • . . - • . •

~~~~~~~~~~~~
•-— • -

~-• •—, —V 
--  

•____
1 ‘~

and 6 is free for the moment. Therefore by (H
9
),

(3.6) g~ (z) > Ic f
~ 

(a
1 
5
0 

+ z~ + 6uj
5 

- a2
) di + li z 11 2 6

2

To estimate the integral term , arguing as in [2] , let ~ 
1 

= 1 — ~ 
1 

The

embedding of E in (La(Sl ) ) 2n is continuous. Therefore ~~, the negative

norm dual of E , contains (L~ 5
1
))2’~ [17]. Hence

(3.7) Ii Z~~ j > a
4 IIzIL

By definition,

0 0  — — + +(3.8) li~ IL = sup (z,w) 2 
— Sup E (z ,w 2 

+ (z ,w 2 + ~ ,w ) 21
E Jl w lI ~~1 L Ilw II~~l L L L

Choosing w = u/ h u l l , we find

• (3.9) ~~(z) > a
5
k(65 — 1) + IIz 11

2 
— 6

2

Setting 6 = k’~ shows

(3.10) ~~ (z) > a
6
k(k~~

’ — 1) — k2~’.

Finally choose y so that

(3.11) 1 + s-y > > 1

which is possible via our choice of s in (11
9
). Hence (3.4) obtains with

= 1 + s-y .

An improved version of Theorem 3.2 can be obtained if H is a simple sum

• of kinetic and potential energy terms. Suppose e.g. H(s) = 4 I~ I
2 

+ V ( t ,q ) .

Then (1.1) reduces to a second order system

( 3 . 12 )  q + V
q
(t~q) = 0

I ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •



j  ~ h ’U i  formally is the Euler equation arising from the functiona l 

-

~~~~~

g(z) = f [V(t ,q) — 
~~

- l~ l ]dt
= 0

• 
. In this setting the analogue of Theorem 3.2 holds without assuming (H

8
).

• Corollary 3.13: If V C C
1
(IR x , P.) and satisfies (H

4
), (H

7
), and (11

9
)

with q replacing z, then (3.12) possesses an unbounded sequence of solution

with 
~~ 

having period kT.

Proof : Since the proof is essentially the same as that of Theorem 3.2, we

will only indicate the appropriate underlying spaces and why (11
8
) can be dropped .

(See also [2], Theorem 4.11) We take T = 2ir as usual and E = (W
1’2(S

1) ) 2~

I with norm

2-u
1 q 11 2 = I (IqI 2 + Iq I

2)dt
0

The appropriate choices for E
1
,E2 are E

1 
= {q eE~q = [q]} and E

2 
= {q€EJ [ql = o}.

Hypothesis (H
e

) is used only to verify (f
3

) for g. To see why it is unneces-

sary in this setting, suppose g(q.) < 14 and g’ (q.)-~ 0 as j -* ~~~. Then drop-

pii~g subscripts and arguing as in ( 3 . 6 ) — ( 3 . 9 )  via (H~ ) and ( H9
)~ for large j

we have

(3.14) ~ + 4 )~q~) ~ g (q) - 4 g ’(q)q = I [V(t ,q) - 4(q~V f l~~ ]dt

2it 2,~
> (l —~~~ ) f V (t,q)dt-M

1
> a

3 f Iq~
5 d t — a 4

• 0 0

• > a5kI5 — a
4

where ~ (q] . Note that (H
7
) implies that

- 
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= (3.15) V(t,q) < q
6 

~q~
U 

+ a
7

for all t C P . ,  q €  . Since g’(g )  -~-0 as j -~~~~~ for large j ,

(3.16) g ’(q~ )4sI 
~~ Ik’II

for all L aC E. Setting i~b = q. and droppoing the j yields

(3.17) II ~II 22 ~ ~~~~~~~~~~~~ dtl +

< a~ II~W~ + ll~ II + a
8

via (11
7
) and (3.15). Combining (3.17) with (3.14) provides a bound for II q.

and (f
3
) is verified.

Remark 3.18: A variant of Corollary 3.13 was obtained recently by Clarke and

Ekeland [5] who replace (H
7
) by (3.15) but assume V is strictly convex. Their 

- I -

approach to (3.15) is rather different from ours and is based on arguments

• from convex analysis, in particular use of a Legendre transform to reduce the

problem to that of minimizing a functional.

Our final result addresses the question of when the kT periodic solutions

obtained in Theorem 3.2 have minimal periods which tend to with k.

• Theorem 3.19: Suppose H €C~~(]R x P.2n , P.) and satisfies (H7), (11
9
) with s

In (t ,z) )
(H’) lim -~.0

• 

8 Izl-’-~
and

H(t ,z) is strictly convex in z.

Let Zk be a family of periodic solutions of (1.1) such that

—28—
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as k -
~ . Then the minimal period of -

~ as Ic -
~

Proof: Suppose the minimal period of is TIc . Letting T = 2-ut Tk
’ and

wk
( T )  5k

(t )
~ 

then as in Theorem 2.34, w
k
Lr) is 2 periodic and satisfies

(2.35). Let 
~k 

= [w
Ici and W

k 
= w

k 
— 

~k 
Then (2.35) implies

• 

• 

(3.20) a
3 

W
k 

L 
Ii Wk L2 ~ 

a
4
T
k lb H (~~~~~~~ , wk)fl 

L
2

< a
S
T
k hh H 

k wk)ll

By (H~ ) ,  since Ii wj1 
-

~~ as k-a- , given any c > 0,
L

(3.21) I l H ( .
~
wk)Jl <

for all sufficiently large k. Therefore by (3.20)— (3.2l),

(3.22) IIW kII <a
6
T
k 

C
~~~k l + Il W kh l )

If {Tk} is uniformly bounded e.g. by M along some subsequence , then for

= C < (~rMa6
)
1 where y > 2 is free for the moment , we have

• 
(3.23) II W IIL =

~
-
~r kk I

The strengthening of the hypotheses of Theorem 3.2 enables us to get a

linear estimate for 1
~~k

1 in terms of hI w k hl oo next. By (H
9
) we find

2-iT T -r
(3.24) 

~0 
H(—~— ~

w
k
)d-r > 2n (a

lI~~k l ” — a
2
)

as in (3.6)—(3.9).

The form of (2.35) implies

—29-
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2 1 T  T T

• (3.25) f  (H (— ~~
-— , w ),~~~) d i = 0

0 
z 2 n k 

]~~~~ fl

for all  ~ €]R~~. But (3 .25 )  is just the Euler equation for the variational

problem

2u T i
(3.26) Mm J H ( -~~~- , W

k 
+ T 1) d T

0

and by (H 10
) ,  r~~ is the unique solution of this minimization problem .

Therefore

2-ut T i  27~ T i
(3.27) 1

o 
H(-~~ - , w

k
)di 

~ ~o 
H(-~~- , Wk 

+ rj)di

for all fl 6]R
2n 

. Choosing T1 = 0 and applying (11
7

) yields

2 -n T i  211 T i
( 3 . 2 8 )  f H(-~~~ , wk

) d T < I H(-~~-, wk
)dT < a

7 IlWk II + a
80 0 L

Combining (3.24) and (3.28), we f ind

(3.29) 
‘~ k ’ 

< M 1 II W III + M
2

Since

• (3.30) i w Ic li 
~k ’ 

+ I! W II ,

by (3.29)-(3.30) ,

(3.31) II Wk j I <  (M
1 

+ 1)11 WI11 + M
2

wh ich shows tha t IIWk II = as Ic -
~~~~~~~. Then for k sufficiently large,

L

(3.32) I~1~ M
3 

lW
1 II

—30— 
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Returning to (3.23) then gives

• (3.33) Il w 1ll ~~~~~ lI W k ll~~

Choosing -
~ so that M3

(-y—l) 1< 1, we see ~~~~~~~~~~~~ is impossible. Hence

as Ic -a- co and the proof is complete .

Remark 3.34: As was the case with Corollary 3.13, an improved version of Theorem

3.19 can be given in the setting of (3.12) . However we will not carry out the

details.
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